skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghosh, Ayon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Regularization of seismic inversions has a strong imprint on tomographic images. We analyze recorded and spectral‐element S, Sdiff, and SS waveforms to evaluate the benefit of body‐wave amplitudes in global tomography. L‐curve analysis for S40RTS models with recorded and synthetic waveforms show that SS‐S traveltimes and SS/S amplitude ratios have minima within the same damping parameter range. SS/S ratios for S40RTS and model GLAD‐M25 show the trade‐off between scale‐length and strength of lowermost‐mantle heterogeneities. The recorded SS/Sdiff ratios are lower than predicted by 3D mantle models which may be explained by a decrease in the mean shear velocity by at the lowermost 200 km of the mantle. Our results suggest that SS/S amplitude measurements made with 3D waveforms can be used to constrain damping in linearized inversions, and amplitudes are essential for studying the size of heterogeneities. 
    more » « less
  2. Abstract With the rise of data volume and computing power, seismological research requires more advanced skills in data processing, numerical methods, and parallel computing. We present the experience of conducting training workshops in various forms of delivery to support the adoption of large-scale high-performance computing (HPC) and cloud computing, advancing seismological research. The seismological foci were on earthquake source parameter estimation in catalogs, forward and adjoint wavefield simulations in 2D and 3D at local, regional, and global scales, earthquake dynamics, ambient noise seismology, and machine learning. This contribution describes the series of workshops delivered as part of research projects, the learning outcomes for participants, and lessons learned by the instructors. Our curriculum was grounded on open and reproducible science, large-scale scientific computing and data mining, and computing infrastructure (access and usage) for HPC and the cloud. We also describe the types of teaching materials that have proven beneficial to the instruction and the sustainability of the program. We propose guidelines to deliver future workshops on these topics. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026